CALCULUS: Graphical, Numerical, Algebraic by Finney, Demana, Watts and Kennedy Chapter 3: Derivatives 3.1: Derivative of a function pg. 98-108

What you'll Learn About

- Definition of the derivative
- Notation

h= Ax

Use the substitution h = x - a to create the definition of the derivative

A₁) Set-up a formula for the slope of $f(x) = x^2$ at x = -1

$$\lim_{h \to 1} \frac{(h-1)^2 - 1}{h-1+1}$$

$$h = x - (-1)$$

$$(h-1) = \chi$$

A₂) Use the substitution
$$h = x - a$$
 to set-up the definition of the derivative
$$h = x - (-1)$$

$$h = x + 1$$

$$1) = x$$

$$h = x + 1$$

B₁) Set-up a formula for the slope of
$$f(x) = \frac{1}{x-2}$$
 at $x = 4$

$$0 = \frac{1}{x-2}$$

$$\lim_{x \to 4} \frac{1}{x-2} = \frac{1}{2}$$

 B_2) Use the substitution h = x - a to set-up the definition of the

1717

derivative
$$\frac{1}{h+4-2} = \frac{1}{h+2} = \frac{1}{h+2}$$
 $\frac{1}{h+4-4} = \frac{1}{h+2}$

